Wüstenameisen nutzen Polarität des Erdmagnetfeldes zur Orientierung

Viele Wüstenameisen der Art Cataglyphis nodus orientieren sich mit Hilfe des Erdmagnetfeldes. Die kleinen Krabbler verlassen sich dabei jedoch auf eine andere Komponente des Magnetfeldes als andere Insekten, berichtet ein Forschungsteam um Dr. Pauline Fleischmann von der Universität Oldenburg in der Zeitschrift Current Biology. Das deute darauf hin, dass die Ameisen einen anderen Mechanismus zur Magnetwahrnehmung einsetzen als die meisten bisher untersuchten Insekten, etwa die berühmten Monarchfalter. Die Forschenden vermuten, dass der Magnetsinn der Wüstenameisen auf winzigen magnetischen Partikeln beruht, etwa aus dem Eisenoxidmineral Magnetit.
Ein quantenbasierter Magnetsinn
Wie der Magnetsinn von Tieren genau funktioniert und welcher physikalische Mechanismus ihm zugrunde liegt, wird in Fachkreisen nach wie vor stark diskutiert. Zum einen steht ein lichtabhängiger Quanteneffekt zur Debatte, der sogenannte Radikalpaarmechanismus. Er wird wahrscheinlich von kleinen Singvögeln und womöglich auch von anderen Insekten wie den Monarchfaltern verwendet. Viele Indizien für einen solchen quantenbasierten Magnetsinn von Singvögeln hat der Sonderforschungsbereich „Magnetrezeption und Navigation von Vertebraten“ zusammengetragen, der an der Universität Oldenburg durch den Biologen Prof. Dr. Henrik Mouritsen koordiniert wird.
Zum anderen könnte die Sinneswahrnehmung bei manchen Tieren auf winzigen magnetischen Partikeln beruhen, die sich in Sinnes- oder Nervenzellen befinden und sich dort ähnlich wie eine Kompassnadel nach Norden ausrichten. Mittlerweile deutet einiges darauf hin, dass in der Natur beide Formen des Magnetsinns vorkommen. Tauben, Fledermäuse oder Meeresschildkröten etwa scheinen magnetische Partikel zu nutzen, um das Magnetfeld zu erspüren.
Polarität oder Inklination
Da die vermuteten Magnetsinne auf unterschiedlichen physikalischen Prinzipien beruhen, lassen sich Verhaltensexperimente konstruieren, um herauszufinden, welches Tier welchen Mechanismus nutzt. So wird angenommen, dass Tiere mit partikelbasiertem Sinn empfindlich für die Nord-Süd-Richtung des Magnetfeldes sind, die sogenannte Polarität, während sich diejenigen, die sich auf den Radikalpaarmechanismus verlassen, die Inklination wahrnehmen, also den Winkel zwischen den gedachten Linien des Erdmagnetfeldes und der Erdoberfläche.
Um Indizien dafür zu finden, wie der Magnetsinn von Wüstenameisen funktioniert, untersuchte Pauline Fleischmann gemeinsam mit Dr. Robin Grob, Johanna Wegmann und Professor Wolfgang Rössler von der Universität Würzburg, welche Komponente des Erdmagnetfeldes diese rund einen Zentimeter großen Tiere wahrnehmen können – Inklination oder Polarität. Das Team hatte 2018 während des Promotionsprojekts der Forscherin an der Universität Würzburg erstmals festgestellt, dass Wüstenameisen über einen Magnetsinn verfügen. Seit 2022 gehört Fleischmann dem Oldenburger SFB als Research Fellow an.
Studie an einer Kolonie in Griechenland
Für die aktuelle Studie setzten die Forschenden die Ameisen einer Kolonie in Griechenland unterschiedlichen manipulierten Magnetfeldern aus. Sie bauten dafür Helmholtzspulen über dem Nesteingang auf und leiteten Ameisen, die aus dem Nest herauskamen, durch einen Tunnel zu einer Experimentierplattform in der Mitte der Spulen. Dort filmte das Team sie bei sogenannten Lernläufen. Dabei handelt es sich um eine Verhaltensweise, die Wüstenameisen zeigen, wenn sie das allererste Mal ihr Nest verlassen.
Fleischmann hatte in ihrem Promotionsprojekt festgestellt, dass die Ameisen das Erdmagnetfeld nutzen, um sich während der Lernläufe die Richtung des Nesteingangs einzuprägen: Sie unterbrechen ihre Bewegung immer wieder, um kurz anzuhalten und dabei in Richtung des Nesteingangs zu schauen. Die Forschenden nehmen an, dass sie dabei mit Hilfe des Magnetfelds ihr visuelles Gedächtnis trainieren. Darauf deuten Ergebnisse zur Gehirnentwicklung hin, die das Team kürzlich im Fachjournal PNAS veröffentlichte.
Künstliche Magnetfelder am Nesteingang
In der aktuellen Studie setzten die Forschenden die Ameisen künstlichen Magnetfeldern aus, die in eine andere Richtung als das natürliche Erdmagnetfeld zeigten. Das Ergebnis: Veränderte das Team lediglich die senkrechte Komponente des Feldes und damit die Inklination, hatte dies keine Auswirkungen auf die Blickrichtung der Ameisen: Sie schauten bei den Lernläufen nach wie vor zur Position des Nesteingangs. War jedoch die Polarität des Feldes, also die Nord-Süd-Ausrichtung, um 180 Grad gedreht, vermuteten die Ameisen den Nesteingang an einer ganz anderen Stelle.
Die Forschenden schließen daraus, dass die Ameisen anders als Monarchfalter oder Singvögel die Inklination des Erdmagnetfeldes nicht verwenden, welche wahrscheinlich vor allem bei Langstreckenwanderungen nützlich ist. Stattdessen nutzen sie die Polarität des Feldes, um sich bei ihren Lernläufen zu orientieren. „Diese Art von Kompass ist besonders nützlich für die Orientierung über vergleichsweise kurze Distanzen“, betont Fleischmann.
Ausgezeichnetes Orientierungsvermögen
Die Wüstenameisen sind schon seit längerem für ihr ausgezeichnetes Orientierungsvermögen bekannt: Sie leben in eintönigen Salzpfannen in der nordafrikanischen Sahara oder in Pinienwäldern in Griechenland und entfernen sich bei der Futtersuche manchmal Hunderte von Metern von ihrem Nest. Wenn sie etwas Essbares gefunden haben, kehren sie auf geradem Weg zum Nesteingang zurück. Die Erkenntnis, dass Ameisen, die gemeinsam mit Bienen und Wespen zur Ordnung der Hautflügler zählen, einen anderen Mechanismus zur Magnetwahrnehmung nutzen als Vertreter anderer Insektenordnungen wie Schmetterlinge oder Kakerlaken, eröffne außerdem neue Wege, um die Evolution dieser besonderen Sinneswahrnehmung im Tierreich zu erforschen.
Originalveröffentlichung
Robin Grob, Johanna Wegmann, Wolfgang Rössler and Pauline Fleischmann: „Cataglyphis ants have a polarity-sensitive magnetic compass“, Current Biology (2024),  https://doi.org/10.1016/j.cub.2024.11.012
Kontakt
Dr. Pauline Fleischmann, T: +49 441 798-3743, E-Mail: pauline.fleischmann@uol.de